C2.1 Structure and Bonding Questions

Q1. The diagram shows a model of part of the giant lattice of a metal.

(a) Name particles \mathbf{X} and \mathbf{Y}.
\qquad
(b) Explain, in terms of the giant structure above, why is it possible to bend a piece of metal. (2)
(Total 4 marks)
Q3. The diagram represents the structure of graphite.

Use your knowledge and understanding of the structure of graphite to explain why graphite can be used:
(a) in the 'leads' of pencils;
(b) as an electrical conductor.
(Total 5 marks)

Q4. Sulphur hexafluoride is a colourless, odourless, non-flammable gas, which is insoluble in water and extremely unreactive. It is used as an insulator in high voltage transformers and switchgear.

The diagram below represents a molecule of sulphur hexafluoride.
a)

a) What type of chemical bond holds the sulphur and fluorine atoms together in sulphur hexafluoride molecules?
(1)
(b) Explain why sulphur hexafluoride has a low boiling point.
(c) Explain how three of the properties of sulphur hexafluoride make it suitable for us an insulator inside electrical transformers.
(3)(Total 6 marks)

UNIT 2.2 AND UNIR 2.3 ATOMIC STRUCTURE AND PROPERTIES Questions

Q1. Silicon is an important element used in the electronics industry.
(a) Silicon can be made by heating a mixture of sand (silicon dioxide) with magnesium powder. The equation for this reaction is shown below.

$$
\mathrm{SiO}_{2}(\mathrm{~s})+2 \mathrm{Mg}(\mathrm{~s}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s})+\mathrm{Si}(\mathrm{~s})
$$

Calculate the mass of silicon dioxide needed to make 1 g of silicon.
Relative atomic masses: $\mathrm{O}=16 ; \mathrm{Si}=28$
Mass = \qquad .. 9
(b) The resulting mixture of magnesium oxide and silicon is added to a beaker containing hydrochloric acid. The silicon is then filtered from the solution.

(i) The magnesium oxide reacts with the hydrochloric acid and forms magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$ solution and water.
magnesium oxide + hydrochloric acid \rightarrow magnesium chloride solution + water

Write a balanced symbol equation for this reaction, including state symbols.
(ii) The gases produced are a mixture of several silicon hydrides.

One of the gases produced in the reaction is the silicon hydride with the formula SiH_{4}. The structure of this molecule is similar to methane, CH_{4}.

Draw a diagram to show the bonding in a molecule of SiH_{4}. Represent the electrons as dots and crosses and only show the outer shell (energy level) electrons.
(iii) A sample of a different silicon hydride was found to contain 1.4 g of silicon and 0.15 g of hydrogen. Calculate the formula of this silicon hydride. You must show all your working to gain full marks. Relative atomic masses: $\mathrm{H}=1 ; \mathrm{Si}=28$
(iv) The silicon hydrides react immediately they come into contact with oxygen in the air. They burst into flames with a small explosion and give out energy.

Which letter, \mathbf{A} to \mathbf{H}, best describes this reaction? [1 mark]

Energy involved in breaking and forming bonds	Activation energy	Rate of reaction	Letter
	high	flow	B
		fast	C
	low	slow	D
		fast	E
		slow	F

(c) The structure of silicon is similar to the structure of diamond. Describe the structure of silicon and explain why it has a high melting point. You may draw a diagram if this helps.
(4)(Total 15 marks)

Q2. Uranium metal can be produced by reacting uranium hexafluoride with calcium.

$$
\mathrm{UF}_{6}+3 \mathrm{Ca} \rightarrow 3 \mathrm{CaF}_{2}+\mathrm{U}
$$

(a) Describe how calcium and fluorine bond together to form calcium fluoride. The electron arrangement of each atom is shown.

(b) Uranium has two main isotopes, ${ }^{92} \mathrm{U}$ and ${ }^{232} \mathrm{U}$. Use these as examples to explain what is meant by the word isotope.
(c) At the start of a reaction there was 174.5 g of uranium hexafluoride, UF_{6}.

Relative atomic masses: F 19; U 235
(i) Calculate the relative formula mass of uranium hexafluoride, UF_{6}.

Relative formula mass $\mathrm{UF}_{6}=$ \qquad g
(ii) Calculate the mass of uranium that would be produced from 134.5 g of uranium hexafluoride.

$$
\text { Mass of uranium }=
$$

\qquad g(2)

Q3. Limestone is a useful mineral. Every day, large amounts of limestone are heated in limekilns to produce lime. Lime is used in the manufacture of iron, cement and glass and for neutralising acidic soils.

(i) The decomposition of limestone is a reversible reaction. Explain what this means.
(ii) Calculate the mass of lime, CaO , that would be produced from 250 tonnes of limestone, CaCO_{3}.

Relative atomic masses: C 12; O 16; Ca 40.
Mass of lime $=$ \qquad tonnes

Q5. Iron is the most commonly used metal. Iron is extracted in a blast furnace from iron oxide using carbon monoxide.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

(a) A sample of the ore haematite contains 70% iron oxide.

Calculate the amount of iron oxide in 2000 tonnes of haematite.
Amount of iron oxide = tonnes
(b) Calculate the amount of iron that can be extracted from 2000 tonnes of haematite. (Relative atomic masses: $\mathrm{O}=16 ; \mathrm{Fe}=56$)
\qquad

C2.4 Rates of Reaction Questions

Q2. Calcium carbonate reacts with dilute hydrochloric acid as shown in the equation below.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2}(\mathrm{~g})
$$

The rate at which this reaction takes place can be studied by measuring the amount of carbon dioxide gas produced.

The graph below shows the results of four experiments, 1 to 4. In each experiment the amount of calcium carbonate, the volume of acid and the concentration of the acid were kept the same but the temperature of the acid was changed each time. The calcium carbonate was in the form of small lumps of marble.

(a) Apart from altering the temperature, suggest two ways in which the reaction of calcium carbonate and hydrochloric acid could be speeded up.
(b) Which graph, 1 to 4 , shows the results of the experiment in which the acid had the highest temperature and explain fully how you know?
(c) (i) In experiment 2, how does the rate of reaction after one minute compare with the rate of reaction after two minutes?
(ii) Explain, as fully as you can, why the reaction rate changes during experiment 2.

Q3. A student investigated the rate of reaction between marble and hydrochloric acid.
The student used an excess of marble.
The reaction can be represented by this equation.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HC} 1(\mathrm{aq}) \rightarrow \mathrm{CaC1}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})
$$

The student used the apparatus shown in the diagram.

The student measured the mass of the flask and contents every half minute for ten minutes.
The results are shown on the graph. Use the graph to answer the questions.
(1)

Mass of
flask and
contents in grams
(1)
(a) Complete the graph opposite by drawing a line of best fit.
(b) Why did the mass of the flask and contents decrease with time?
(c) After how many minutes had all the acid been used up?
minutes
(d) The student repeated the experiment at a higher temperature. All other variables were kept the same as in the first experiment. The rate of reaction was much faster.
(i) Draw a line on the graph to show what the results for this second experiment might look like.
(ii) Why does an increase in temperature increase the rate of reaction?

Unit C2.5 Exothermic Endothermic Questions

Q1. The diagram shows some magnesium ribbon burning.

(a) Choose words from the list to complete the sentences below.
electrical heat light kine
tic neutralisation a reduction
an endothermic an exothermic a
(b) Complete the word equation for the reaction.
magnesium + \qquad \longrightarrow magnesium oxide
(Total 4 marks)
Q4. (a) The equation for the reaction that takes place when ammonium chloride is heated is:

$$
\underset{\text { ammonium chloride }}{\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s})} \rightleftharpoons \underset{\substack{\text { ammonia }}}{\mathrm{NH}_{3}(\mathrm{~g})}+\underset{\text { hydrogen chloride }}{\mathrm{HCl}(\mathrm{~g})}
$$

The diagram shows how a teacher demonstrated this reaction. The demonstration was carried out in a fume cupboard.

(i) Apart from the gases normally in the atmosphere, which two gases would be at \mathbf{X} ?
and (1)
(ii) Name the white solid that has formed at $\mathbf{Y} .(1)$
(iii) Why was the demonstration carried out in a fume cupboard? (1)
(iv) Complete the four spaces in the passage.
shows that there is one atom of
\qquad and three atoms of \qquad in each
of ammonia. These atoms are joined by bonds that are formed by sharing pairs of electrons. This type of bond is called a. \qquad bond.
(b) Electrons, neutrons and protons are sub-atomic particles.
(i) Complete the three spaces in the table.

Name of sub-atomic particle	Relative mass	Relative charge
........................	1	+1
........................	1	0
......................	$\frac{1}{1840}$	-1

(ii) Which two sub-atomic particles are in the nucleus of an atom?
\qquad and \qquad

C2.6 Acids, Bases Salts Questions

Q1. Acids and bases are commonly found around the home.
(a) Baking powder contains sodium hydrogencarbonate mixed with an acid.
(i) When water is added, the baking powder releases carbon dioxide. How could you test the gas to show that it is carbon dioxide?

Test \qquad .Result of test
(ii) Complete and balance the chemical equation for the reaction of sodium hydrogencarbonate with sulphuric acid.

(b) Indigestion tablets contain bases which cure indigestion by neutralising excess stomach acid
(i) One type of indigestion tablet contains magnesium hydroxide. This base neutralises stomach acid as shown by the balanced chemical equation.
$\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Write a balanced ionic equation for the neutralisation reaction.
(ii) How does the pH in the stomach change after taking the tablets?
(c) Ammonium sulphate is used as a lawn fertiliser.Using ammonia solution, describe how you would make the fertiliser ammonium sulphate.

Q2. The salt sodium hydrogen phosphate $\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)$ is used as a softening agent in processed cheese. It can be made by reacting phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ with an alkali.
(a) Complete the name of an alkali that could react with phosphoric acid to make sodium hydrogen phosphate.
hydroxide
(b) What is the name given to a reaction in which an acid reacts with an alkali to make a salt?
(c) How would the pH change when alkali is added to the phosphoric acid solution?
(d) What ions are present when any acid is dissolved in water?
(e) What ions are present when any alkali is dissolved in water?
(f) Write a chemical equation for the reaction which takes place between the ions you have named in (e) and (f).

Q4. Sodium carbonate is a useful chemical that can be made from sodium chloride.
(a) The flow chart below shows one way in which sodium carbonate can be made.

2. Explain what is meant by a thermal decomposition reaction.(2)
(iii) Name one substance that is recycled in this process. (1)
(b) When sodium carbonate solution is added to zinc sulphate solution a white solid is precipitated.
(i) Use the Data Sheet to help you to name the white solid that is produced in this reaction. (1)
(ii) State why this solid is formed.

C2.7 Electrolysis Questions

Q1. Electrolysis can be used to remove unwanted hair from the skin. The hair is first coated with a layer of gel containing ions in solution. The positive electrode is connected by a patch to the skin. The negative electrode is connected to the hair. Electricity flows through the gel and causes electrolysis of the body fluid around the hair follicle.

(a) Metal wires conduct electricity to the electrodes. Explain how metals conduct electricity. (2)
(b) Explain why the gel containing ions in solution can conduct electricity. (1)
(c) The body fluid is a solution that contains sodium chloride. The electricity causes the electrolysis of a small amount of this solution.

This solution contains hydrogen ions that move to the negative electrode.
(i) The half equation represents the reaction at the negative electrode.

$$
2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \quad \rightarrow \quad \mathrm{H}_{2} \quad \text { Explain why this reaction is a reduction. (1) }
$$

(ii) As a result of the electrolysis of sodium chloride solution, an alkali forms which kills the hair follicle. What is the name of this alkali?
(iii) Complete the half equation for the reaction at the positive electrode.

$$
\mathrm{Cl}^{-} \quad \rightarrow \quad \mathrm{Cl}_{2}
$$

Q2. An electric current was passed through dilute sulphuric acid. The apparatus used is shown. Oxygen was formed at the anode.

Explain your answer. (3)
(a) What name is given to solutions which decompose when electricity is passed through them? (1)
(b) The ionic equation for the reaction at the anode is:

$$
4 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}^{-} \quad \text { Explain this type of }
$$

reaction. (2)
(c) Write a balanced ionic equation for the reaction at the cathode. (2)
(d) What happens to the concentration of the sulphuric acid as the electricity is passed through it?

Q3. Sodium hydroxide, hydrogen and chlorine can all be made in one industrial process. Electricity is passed through aqueous sodium chloride solution (brine). The diagram below shows a cell that can be used for this process.

(a) Name A, B and C.

Gas A \qquad
Gas B \qquad
Solution C
(b) Balance the equations for the reactions at the electrodes.
(i) Cl^{-}- $\mathrm{e}^{-} \rightarrow \mathrm{Cl}_{2}$
(ii) $\mathrm{H}^{+}+\ldots \ldots \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$
(c) Name the compound in this cell which produces the hydrogen ions. (1)
(d) Which type of particles must be able to pass through the barrier to allow the electrolysis to take place?

Q4. The electrolysis of sodium chloride solution produces useful substances.
(a) Explain the meaning of electrolysis. (2)
(b) The diagram shows an apparatus used for the electrolysis of sodium chloride solution.

Reproduced with the permission of Nelson Thornes Ltd from PATRICK FULLICK et al, ISBN 0-7487-9644- 4. First published in 2006

The electrolysis produces two gases, chlorine and Gas A.
Name Gas A
(c) The electrodes used in this process can be made of graphite. Explain why graphite conducts electricity.

C2.1 Structure and Bonding Answers [max 25]

M1. (a) \mathbf{X} - (metal) atom / ion
\mathbf{Y} - electron
(b) free electrons or electrons move
(allow metal) atoms / ions to slide over each other
OR
bonding non - directional for 2 marks

M3. (a) made of layers
of carbon atoms
weak forces of attraction between layers (owtte) / weak
vertical bonds i.e.
candidate refers to the diagram
layers can slide over each other
layers peel off
each for 1 mark
(b) because there are electrons
which are free (to move)
reason for free electrons / each carbon atom has 3 covalent bonds
each for 1 mark
to $\max 5$

M4.
(a) covalent/description of covalent
(b) forces/bonds between the molecules/particles (not atoms) are weak
(c) non-flammable so it will not burn etc.
extremely unreactive so it will not react with materials in the transformer, does not conduct electricity so it can insulate the transformer gas so it has freedom to move and insulate whole area

UNIT 2.2 AND UNIR 2.3 ATOMIC STRUCTURE AND PROPERTIES Answers

M1. (a) $\quad \mathrm{M}_{\mathrm{r}}\left(\mathrm{SiO}_{2}\right)=60$
$60 \mathrm{~g} \mathrm{SiO}_{2} \rightarrow 28 \mathrm{~g} \mathrm{Si}$
$2.14 \mathrm{~g} \mathrm{SiO}_{2} \rightarrow 1 \mathrm{~g} \mathrm{Si}$
OR $\mathrm{M}_{\mathrm{r}}\left(\mathrm{SiO}_{2}\right)=60(1)$
moles if silicon needed $=\frac{\frac{1}{28}}{28}=0.0357 \quad$ mass of SiO_{2} needed $=0.0357 \times 60(1)=2.14 \mathrm{~g}(1)$
OR $\mathrm{M}_{\mathrm{r}}\left(\mathrm{SiO}_{2}\right)=60(1)$
mass $\mathrm{SiO}_{2}=1 \times{\left(\frac{60}{28}\right)_{(1)} \quad=2.14 \mathrm{~g}(1)}^{(1)}$
(b) (i) $\mathrm{MgO}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
(ii)

$\stackrel{x_{0}^{+}}{\mathrm{H}}$

(iii) $\mathbf{S i}$

H
$\frac{1.4}{28}$
$\frac{0.15}{1}$
$=0.05$
$=0.15$

1
3
for whole number ratio can be implied

Si H_{3}
evidence of mass / $A_{r} \quad 1$ mark
proportions of each 1 mark
whole number ratio 1 mark
correct formula 1

mark

(iv) C
accept c
(c) any four from:

- giant structure / macromolecule / lattice / giant molecule allow giant molecular / giant atomic structure
- each silicon atom joined to four other atoms (or diagram)
- covalent bonds
- bonds are strong or large amount of energy needed to break bonds accept hard to break bonds
- large number of bonds to be broken
mention of giant ionic structure or intermolecular forces or intermolecular bonds max 1 mark
diamond or carbon discussion max 3 marks unless clearly linked to silicon

M2. (a) calcium atom loses two electrons
accept diagrams with correct labelling
(each) fluorine atom gains one electron
accept two electrons transfer from a calcium atom to the two fluorine atoms for these first two marks
forming full (outer) shells of electrons
accept forming full (outer) energy levels or noble gas electronic structures do not accept stable unless qualified
giving the ions Ca^{2+} and F^{-}
attraction between ions of opposite charges
accept electrostatic attraction between ions
if candidate mentions sharing or pairing of electrons then no credit
if explanation is entirely correct but they state this is called covalent bonding, the maximum mark is four
(b) atoms of the same element
atomic number is same
accept each contains 92 or same number of protons
mass numbers differ or each has a different number of neutrons
one has 146 neutrons the other has 143 neutrons
accept one has three more or less neutrons than the other
(c) (i) 349
(ii) $349 \mathrm{~g} \mathrm{UF}_{2}$ produces $235 \mathrm{~g} \mathrm{U} \mathrm{[1]}$
first mark can be awarded if answer is incorrect
answer $=117.5$

M3. (i) a reaction in which the products can be changed back to reactants accept a reaction that can go forwards or backwards
under certain conditions
(ii) $\mathrm{M}_{\mathrm{r}} \mathrm{CaCO}_{3}=100$
$\mathrm{M}_{\mathrm{r}} \mathrm{CaO}=56$
mass of $\mathrm{CaO}=140$ (tonnes)

M5. (a) 1400
(b) 980
correct answer gains full credit
160 tonnes $\mathrm{Fe}_{2} \mathrm{O}_{3}$ produces 112 tonnes Fe
if incorrect allow one mark for relative formula mass iron oxide $=160$ allow e.c.f.

1400 tonnes $\mathrm{Fe}_{2} \mathrm{O}_{3}$ will produce $1400 / 160 \times 112$ tonnes Fe use of 2000 tonnes $\mathrm{Fe}_{2} \mathrm{O}_{3}$ - deduct one mark only if working out is correct

C2.4 Rates of Reaction Answers

M2. (a) increase concentration of acid; increase surface area of solid or grind up the solid;add a catalyst
(b) 1 ;it is the one that makes the gas fastest (steeper curve etc)
(c) (i) faster after one minute, slower after 2 minutes
(ii) the reactants get used up;so concentration decreases/less chance of collision

M3. (a) sensible line of best fit which goes through or close to all the points except the anomalous point; allow wobbly / short double lines
(b) loss of gas / loss of CO_{2}; idea of gas produced / formed
(c) 7
(d) (i) steeper line from around the same starting point and left of the points
levelling off at 99; accept short level line at 99
(ii) any three from:

- particles / molecules / atoms/ ions have more energy; allow given / gain / get energy
- move faster
- collide more often or more chance of collisions or bump into each other more
- collide with more force / energy or more particles have the activation energy or more collisions result in reaction or more collisions are successful

M1. (a) heat
light
an exothermic

$$
\text { in any order for } 1 \text { mark each }
$$

(b) oxygen $/ \mathrm{O}_{2}$
for 1 mark

M4. (a) (i) ammonia and hydrogen chloride both required either order accept formulae if correct in every detail
(ii) ammonium chloride / $\mathrm{NH}_{4} \mathrm{Cl}$ do not credit ammonia chloride
(iii) the fumes / gases / are poisonous / toxic
or ammonia and hydrogen chloride are poisonous / toxic / lethal accept just ammonia is poisonous / toxic accept just hydrogen chloride is poisonous / toxic accept vapour is poisonous / toxic do not credit just fumes are dangerous or harmful
(iv) nitrogen
hydrogen
molecule
covalent
(b) (i) proton; neutron; electron
(ii) protons and neutrons
both required in either order

C2.6 Acids, Bases Salts Answers

M1.

(ii) $2 \mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$
$\mathrm{Na}_{2} \mathrm{SO}_{4}+(2) \mathrm{H}_{2} \mathrm{O}+(2) \mathrm{CO}_{2}$
correctly balanced
(b) (i) $\mathrm{H}^{+}+\mathrm{OH}^{-}$
$\rightarrow \mathrm{H}_{2} \mathrm{O}$
deduct one mark if incorrectly balanced
accept $\mathrm{H}_{3} \mathrm{O}^{+}$instead of H^{+}then $2 \mathrm{H}_{2} \mathrm{O}$ needed for balance
(ii) pH increases accept numerical indication
(c) addition of sulphuric acid
correct use of an indicator accept idea of forming a neutral solution
crystallisation (of neutral solution) accept description using evaporation

M2. (a) sodium
(b) neutralisation
(c) increase/inc. number
(d) H^{+}
(e) OH^{-}
(f) $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$

M4. (a) (i) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ or $(\mathrm{Na}+)_{2} \mathrm{CO}_{3}{ }^{2-}$ must be completely correct
(ii) (1) decomposition of limestone or decomposition of coal or decomposition of sodium hydrogen carbonate (owtte.) allow equations even if not correctly balanced
(2) breakdown/split up not decomposed by heat
(iii) carbon dioxide or ammonia $\left[\mathrm{CO}_{2}\right]$ or $\left[\mathrm{NH}_{3}\right]$
(b) (i) zinc carbonate or zinc hydroxide allow formulae if completely correct
(ii) (zinc carbonate) is insoluble (in water)
(i) and (ii) are independent marks)

C2.7 Electrolysis Answers

M1. (a) any two from:

- outer shell electrons / electrons in highest energy level (in metals)
- electrons are delocalised / sea of electrons
- electrons are free or electrons move around or electrons are free to flow or electrons attracted to positive terminal
- electrons carry charge / current or electrons form the current / electrons transfer charge / electrons pass charge
(b) ions can move / are attracted to electrode; accept ions are free; allow 'they' for ions

Or attracted to named electrode OR ions are charged or ions form / carry the current or ions form the charge
(c) (i) electron gain ignore hydrogen reduces charge
(ii) sodium hydroxide or NaOH or caustic soda
(iii) $2 \mathrm{Cl}^{-}-2 \mathrm{e}^{-} \rightarrow \mathrm{Cl}_{2}$ or $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$

M2. (a) electrolytes
(b) oxidation
electrons lost
(c) $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$
(d) concentration increases

OH - discharged from water / water decomposes
H^{+}concentration increases / H_{2} and O_{2} evolved

M3. (a) Gas $A=C h l o r i n e / \mathrm{Cl}_{2}$ not Cl and $\mathrm{Gas} \mathrm{B}=\mathrm{Hydrogen} / \mathrm{H}_{2}$ not H
Solution $\mathrm{C}=$ sodium hydroxide $/ \mathrm{NaOH} /$ spent brine
(b) (i) 2,2
(ii) 2, 2
(c) water/ $\mathrm{H}_{2} \mathrm{O} /$ hydrogen oxide not hydrogen hydroxide
(d) ions/positive ions/negative ions/cations/anions not charged particles/positive particles/negative particles not $\mathrm{H}^{+} / \mathrm{Cl} / \mathrm{Na}^{+} / \mathrm{OH}$
Allow hydrogen ions etc.
not sulphate ions

M4. (a) electric current / electricity
plus one from:

- is passed through ionic compound / substance / electrolyte
- passed through molten/aqueous compound / substance
must be linked to electricity allow liquid compound / substance do not allow solution / liquid alone
- causing decomposition
accept split up / breakdown / breaking up owtte ignore separated accept elements are formed ignore new substances form
(b) hydrogen; accept H_{2}; do not accept $\mathrm{H} / \mathrm{H}^{2}$
(c) one electron from each atom
accept each carbon is bonded to three other carbon atoms leaving one (unbonded) electron owtte
must be linked to electrons
answers of delocalised / free electrons only, gains 1 mark accept each carbon is bonded to three other carbon atoms leaving delocalised / free electrons = 2 marks
maximum 1 mark if graphite described as a metal / giant ionic lattice

